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FUNCTION ALGEBRAS

by
H. L. ROYDEN

Introduction: By a function algebra I shall mean a collection A of
complex-valued functions on a set X such that the (pointwise) sum and
the product of two functions in A are again in A. We shall always
suppose that A contains the constant functions so that A becomes an
algebra with unit over the field of complex numbers. A function algebra
A 1is called self adjoint if the complex conjugate of each funcﬁion in
A 1is again in A, and the theory of self-adjoint algebras is quite
different from that of non-self adjoint algebras. An example of a self-
edjoint function algebra is given by the algebra of all continuous
complex-valued functions on a topological space X. A thorough descrip-
tion of the theory of such algebras is given in the book by Gilman and
Jerison [27].

My own interest in function algebras arose from the study of
algebras of analytic functions on some sort of an analytic space X.
These algebras are of course very far from being self-adjoint. A con-
siderable amount of effort has gone into the study of certain of these
algebras and of the relationship between algebraic properties of such an

algebra and the analytic structure of the underlying space X. This



ineludes work by Bers [8], Bishop [10], (12], Chevalley and Kakutani
(43]), Edwards [22], Heins [29], Helmer [30], Henriksen [33], Rudin [57],
Wermer [70], [71] and myself [54], [55]. One of the principal purposes
of the present discussion 1s to give & general treatment of function
algebras into which many of the above results may be fitted.

Another purpose is to illustrate the application of methods from
the theory of functions of several complex variables to derive results
about non-self adjoint function algebras. Excellent examples of such
applications are given 1n the papers by Arens and Calderon {2] and
Rossi [52], and in Section 7 I use a theorem of Arens and mine to illus-
trate these techniques. This theorem describes the one-dimensional
cohomology of the spectrum of & Banach algebra in terms of the group of
invertible elements of the algebra. It generalizes to arbitrary commu-
tative Banach algebras the theorems of Bruschlinsky [18] and Eilenberg
[23], deseribing the one-dimensional cohamology of a compact set X in
terms of C(X).

The topies discussed here are influenced by my own interest, and
because of the excellent summary by Wermer [T76] I have omitted discus-

sion of much of the work of Wermer, Bishop, and Rossi.



1. Algebras and thelr spectra. Let X be-a set of points and
A an algebra of complex valued functione on X. We shall always assume
that 1 belongs to A and that the functions of A separate the points
of X. If X 1s a topological space, we shall also suppose that each
element in X 1is continuous.

By the spectrum £ = £(A) of A we mean the set of all non-
zero homomorphisms of A 1into the complex field. The set X is im-
bedded in I 1if we identify each x € X with the homomorphism
f - f(x). There is a natural isomorphism of A with an algebra 2
of functions on % defined by £(n) = n(f) for e L and f ¢ A.
The algebra A then consists of the restrictions to X of the
elements of 2

It is often convenient to topologize % by usingvthe weakest
topology under which the elements of 2 are continuous. We refer to
this topology as the Gelfand topology for Z. It is always Hausdorff,
and the natural embedding of X into I with the Gelfand topology is
a continuous mapping, although the topology of X may be stronger than
the topology it would have as a subspace of I with the Gelfand
topology. If X is compact, however, this natural embedding must be
a homeomorphism into I with the Gelfand topology. The following
lemma gives a condition for the compactness of £ 1in the Gelfand

topology:

Lemma 1. The spectrum X of a function algebra A is compact
in the Gelfand topology if and only if each element of 3. 1s bounded

on X.



Another entity which can be associated with A 1s the set 7)?
of maximal ideals of A. Since each element of I 1s uniquely charac-
terized by its kernel, which i1s a maximal ideal, we may consider £ to
be (identified with) a subset of @ Proposition 3 gives a condition

for this subset to be all of /7.



2. Divisibility properties of function algebras. In this
section we explore same of the consequences of various relations between
zeros of elements of a function algebra and their divisibility proper-
ties.A Here we consider the spectrum £ of an algebra as a set without
a topology. Some of the properties which a function algebra A on a
set X may possess are the following:

(ao) If feA, and sup |f(x)] <1, then 1 - f has an

x eX
inverse in A.

(¢) If feA and if f 1is never zero, then f has an

inverse in A.

(B) If fl, ooy fn are elements of A with no common zeros,
then there are elements B1s +vr s 8y in A such that
gfy v gty =1

() If feA and f is not identically zero, there are a

finite number of functions f fn in A which separate the

12 e
zeros of f.

If A has property (a) we say that it is inverse closed. If it
has the property (ao) we say that it is weakly inverse closed. Note
that (B) implies (@) and (a) implies (ao)a If A 1is closed under

uniform convergence, then (ao) holds.

Proposition 1. If the algebra A has property (ao), then for

each f ¢ A and each =n € Z(A) we have

|nf| < sup |£{x)| .
xeX



Proof: Suppose that for all x € X we have [f(x)|<M <.
Then for each complex number ) with |A| > M, we have
sup |»"Yf|'<1, and so 1 - A"Lf hes an inverse g 1in A. Thus
1 = x(1) = x[g(l - A712)] = 2(8) n(1 - A71e) = a(g) [1 - 271 x(£)],
and consequently O £ 1 - x'l n(f). But this means nf £ \. Since
this holds for every XA with |r»| > M, we must have |nf| <M,
proving the proposition.

Combining this proposition with Lemma 1 we have the following

corollary:

Corollary: Let A be a function algebra with property (O%).
Then the spectrum Z(A) is compact (in the Gelfand topology) if and
only if each f 1in A 1s bounded.

A slight modification of the proof of Proposition 1 gives us

the following consequence of property (Q):

Proposition 2; Let A have property (), and let = ¢ Z(A).

Then
xf e £[X] .

The following proposition gives some evidence of the effect of

completion of a function algebra on its spectrum.

Proposition 3: Let A be an algebra of bounded functions
having property (05). Then the spectrum and maximal ideal space of A
coincide with the spectrum of K} the completion of A under uniform
convergence on X. Moreover, the Gelfand topologies of £(A) and

£(A) also coincide.



Proof: Proposition 1 implies that each homomorphism =x in Z(A)
is continuous in the sup norm for A (i.e., the norm defined by
2]l = sup |£(x)|). Hence each = € Z(A) has a unique extension to
a homogziﬁiism in Z(R). Conversely, easch = in Z(A) is the unique
continuous extension of = restricted to A. Thus £(A) and Z(K)
coincide. The Gelfand topology for E(K) is by its definition stronger
than the Gelfand topology for Z(A). Since the latter is Hausdorff,
while the former is compact by the corollary of Proposition 1, the two
topologies are the same.

Let I be a maximal ideal of A. It follows from (ao) that
the completion T in A of I is an ideal which does not contain 1.
From the fact that A 1is a Banach algebra we deduce [25] that there is
a homomorphism of A onto C whose kernel contains I. The re-
striction of this homomorphism to A has kernel I, and so the set
of maximal ideals of A coincides with the spectrum of A, proving

the proposition.

Proposition 4: Let A be an algebra of functions on a set X.

If X 1is the set ??7 of maximal ideals of A, then (B) holds.

Proof: Let fl’ cee g fn be a finite set of functions such
that 1 cannot be expressed as I eifi'
f

17 e fn is proper and thus contained in a maximal ideal. By

Then the ideal generated by

hypothesis there is a point x such that this maximal ideal consists
of all functions vanishing at x. Thus x 1s a common zero of

fl, ooy fn, and consequently (B) holds proving the proposition.



Proposition 5: Let A be an algebra of continuous functions on
a compact space X. Then X 1s the spectrum of A 1if and only if A
has property (B).

Proof: If X 1s the spectrum of A, then X 1is also the
maximal ideal space of A by Proposition 3. Hence (B) holde by
Proposition L.

Let us assume on the other hand that A has property (B),and
let I be a maximal ideal of A. Then (B) implies that any finite set
of funetions of I have a common zero. Since X 1is compact, this
implies all functions of I have a common zero x. Since I 1is
maximal, it must be the ideal consisting of all functions vanishing

at x. Thus X(A) coincides with X, proving the proposition.

Proposition 6: Let A be a function algebra on a set X, and
suppose that A has properties (B) and (7). Then X 1is the spectrum
of A.

Proof: Let = be an element of the spectrum of A and fo an
element of the kernel of xn which is not identically zero. (Such an
element must exist unless X consists of a single point.) By (7)
there are functions fl’ cee fn which separate points of the set
{x : fo(x) = 0} . Subtracting suitable constants, we may take the
functions fl’
that any finite set of functions in a proper ideal have a common zero,

-+« s £, to be in the kernel of =x. Since (B) implies

there is a point x € X such that fi(x) =0, 0<1i<n. On the other

hand the functions fo,f oo g fn cannot vanish simultaneously at

i’

any other point of X because of the fact that fl, ey fn separate

the zeros of f_ . If now g is any function in the kernel of =x, (B)

8



implies that g must have a zero in common with fo’fl’ ooy fn.
Hence g(x) = 0. But for any g ¢ A, the function g - ng 1is in the
kernel of =, whence g(x) = ng. Thus x 1is the evaluation at x,

proving the proposition.



3. Homomorphisms of function algebras. Let A and B Dbe two
function algebras on topological spaces X and Y, and let h be a
homomorphiem of A into B. Then for each homomorphism = ¢ £(B) we
have a homomorphism @(x) in Z(A) defined by @(x) = xeh. Thus for
each yeY and f ¢ A we have f(o(y)) = (hf) (y). We call the
meapping @ the adjoint of h (and sometimes write ¢ = h¥). If we
use the Gelfand topology for ZI(A), then ¢ 1is a continuous map of
£(B) into Z(A), and its restriction to Y is a continuous masp of Y
into x(A).

If we know that the space X, considered as a point set without
topdlogy is the spectrum of A, then the adjoint mapping @ of h is
defined as a mapping of Y into X. Under what conditions can we say
that it is continuous? If X 1is compact, then it must already have
the Gelfand topology, and so ¢ 1is continuous. We state this as the

following proposition:;

Proposition 7: Let A be a function algebra on a compact set
X, and suppose that X, as a point set, is the spectrum of A. Let B
be a function algebra on a topological space Y, and let h be a
homomorphism of A into B. Then there is a unique continuous map ¢

of Y into X such that

(he)(y) = £(p(y)) .

Even when X 1is not compact and does not have the Gelfand
topology we can sometimes insure the continuity of ¢ as follows:

For a function algebra A on X we define the following condition:

10



(5) The space X is metrizable, and for each sequence < X, >
from X which does not converge there is an f 1in A such that the

sequence < f(xn) > does not converge.

Proposition 8: ILet A and B be function algebras on the
metrizable spaces X and Y. Suppose that X (as a point set) is the
spectrum of A and that condition (8) holds. Then there is a unique

continuous mapping @ of Y into X such that (hf)(y) = £(e(y)).

Proof: Only the continuity of ¢ needs to be established.
Since X and Y are metrizable, it suffices to show that ¢ takes
convergent sequences into convergent sequences. Let < Yy > beas
convergent sequence in Y with limit y. Then for each f e A we
have f(¢(yh)) = (hf)(yn), which converges to (hf)(y) = f(o(y)).
Since this holds for each f ¢ A, condition (&) implies that the
sequence < @(yn) > converges to some element x in X. Since
f(x) = f(p(y)) for all f ¢ A and A separates points of X, we
have x = @(y). Thus @ 1s continuous, proving the proposition.

An extension of the mapping properties in these propositions
can be gotten as follows: Let D be a directed set under a quasi~
order 4, and suppose that to each @ ¢ D there is assigned an
algebra Aa' and that to each pair of elements Q@< B in D there is

& homomorphism hﬁ

a:AaaA

8 such that for each O we have hg the

identity and for @ { B £ 7 we have hg ° hg = h;- Then the system

[Aa, hg] is called a direct system of algebras. For each such direct

system there is an algebra A celled the direct limit of the system

and a family of homomorphisms : Aa — A such that

By

11



(1) hBhgaha for a4 B

(11) A= kgl?ta.nge hy -

These two properties characterize A to within isomorphism.

If we suppose that to each O we have assigned a topological
space Xa and that to each pair @ < B we have assigned a continuous
mapping cpg 2 XB - Xa such that cpg is the identity and cpg Q)g = q%
for a< B< 7, then we call (Xa, (pg} an inverse system of topo-
logical spaces. For each such inverse system we define a topological
space X, called the inverse limit of the system, by taking X to

conslst of those elements x = {xa] of the direct product X Xa which
D

satisfy cpg(xﬁ) = x, for a < B. We define the projection
(PB : X —+XB by setting ch(x) = xB° We have cpa = (pg q)B for a< B.

The topology in X may be defined either by considering X as a
subspace of the topological product X Xa or equivalently by taking
the weakest topology such that the projections cpa are all continuous.
For further details concerning direct and inverse systems and their

limits see [24] and [42]-

Proposition 9: Let [Aa, hg} be a direct system of algebras
with direct 1imit A, and let [Xa, (pg} be the inverse system
obtained by teking Xa to be the spectrum of Aa and cpg to be the
adjoint of hg‘° Let X be the inverse limit of this system. Then X
is the spectrum of A and the projections (pa of X 1into xa are

the adjoints of the projections ha of Aa into A.



Proof: Let x e X, and f ¢ A. Then there is an O and an
f, € Ay such that f =ha(fa). Define x(f) to be q)a(x)(fa). Then
x(£) 1is readily seen to be independent of the choice of @ and to
define a homomorphism of A onto the complex numbers, i.e. x € Z(A).
On the other hand, each y € IZ(A) comes from that- x ¢ X whose
coordinates {ﬁa] are given by xa n e ha' Thus we have a natural
correspondence between X and Z(A), and it follows from this con-
struction that the projections Qa and ha are adjoint.

The principal use we make of direct systems is the following:
Let A De an algebra and D the set of all finite subsets of A
directed by inclusion C. If a = [fl, cve fn] we let Aa be the
subalgebra of A generated by a. For aC B, we have AaC AB’

and we take hg to be the inclusion map of Aa into A_,. Then

g

[Aa, hgl is a direct system whose direct limit 1s A and for which
the projection ha : Aa — A 1is Jjust the inclusion of Aa in A.

By the subalgebra Aa “generated" by O we may mean either
(1) the subalgebra consisting of all polynomials P(fl, cee fn) of
the elements of @, (11) the subalgebra consisting of all elements
€ In A such that g=P Q-l where P and Q are polynamials in
12 cre fn, and Q has an inverse in A, or (iii) the closure of
the subalgebra in (i) in the case when A 1is a Banach algebra. For
our purposes it is more convenient to take one of the latter notions,

since we would like for Aa to have a compact spectrum if A does.

In (i1i) the algebras Aa are themselves Banach algebras.

13



4. Some examples of function algebras. In this section we give
gsome examples of function algebras which illustrate the various prop-

erties discussed in the earlier sections.

Example 1: Let X be an open set in the plane or on a non-
compact Riemann surface, and let A be the algebra of all analytic
functions on X. Then A has properties (&), (B), (7) and (8).

(ef. [29], [541, [55]). Thus it follows by Proposition 6 that X 1is
the spectrum of A. If Y 1is another such open set on & Riemann sur-
face and B the algebra of all analytic functions on Y, then by
Proposition 8 every homomorphism h of A into B arises from a
unique continuous mapping ¢ of Y 1nto X so that

(hf)(y) = £(o(y)). If we make use of its continuity, the mapping ¢

is easily seen to be analytic and we have the results of [54] and [55].

Exemple 2: Let X be a Stein manifold [19] and A the algebra
of analytic functions on A. Then the algebra A ssatisfies (B)
(ef. [19], p. 11), and it can be shown that the spectrum of A 1is X
({22], p. 512). It follows from Corcllary 4 of [19] that A satisfies
property (8). If Y 1is another Stein manifold and B the algebra of
analytic functions on B, then every homomorphism h of A into B
is, by Proposition 8, induced by a continuous mapping ¢ of Y into
X such that (hf)(y) = £f(@(y)). We thus obtain the principel theorem
of [22].

The discussion in Examples 1 and 2 shows the utilization of
Proposition 8 to get the continuity of the mapping ¢ without knowing

that the Gelfand topology for X coincides with the original topology

14



of X. Remmert has recently shown that every non-compact Riemann

> and

surface can be properly (in the sense of Bourbaki) embedded in C
each Stein manifold in some Cn. From this it follows that the Gelfand
topology for X in Examples 1 and 2 is in fact the original topology

for X.

Example 3: An algebra in which (ao) does not hold 1s the
following: ILet X = [0,1] and let A consist of all continuous
functions on [0,1] which can be expressed in the form
P(x,ex)/Q(x,ex), where P(x,y) and Q(x,y) are polynomials in x
and y with Q not Civisible by y. Then the spectrum of A 1is X,
while the ideal generated by e* 15 a maximal ideal whose quotient
field is isomorphic to the field of all rational functions of one
indeterminate over the complex numbers. This 1deal together with the

points of [0,1] constitute the set of maximal ideals of A.

Example 4: Let X be the bicylinder (< z > |zl| <1,

1%
]z2| < 1} 1in the space 02 of two complex variables, and let A Dbe
the algebra consisting of those functions which are continmuous on X
and analytic in the interior of X. Then A satisfies (@), (B), and
(7), and its spectrum is X. Since X 1is compact, its topology is

the Gelfand topology induced by A.

Example 5: Let Y be the boundary (< 2122, >
{izlljilﬂ |22l =1) or (lzll = 1, |22| < 1)} of the bicylinder,
and let B be the algebra consisting of the restrictions to Y of the
functions in the algebra A of the preceding example. Then B has
property (@) but not (B). The spectrum £(B) can be identified in a
natural wzy with X, and B with A.

15



Example 6: Let X be the unit disc |z| <1, and let A be
the algebra of all functions which are analytic in |z| <1 and con-
tinuous on X. Then the spectrum of A is X. Let A' be the -algebra
on X which consists of all uniform limits of polynomials in 2z and
|z|. Then A' 1s a super-algebra of A, but the spectrum of A' is
homeomorphic to the cone |z| <t <1. If we let A" be the algebra
of all continuocus functions on X, then A" 1sa super-algebra of A',
but its spectrum has shrunk back down to X again. This example is

suggested by a remark in [51].

Example 7: Let X Dbe the set of non-negative integers and A
the algebra of all complex-valued sequences < a > which are
ultimately constant, i.e., those sequences for which there is an N
such that & =a, for all n> N. Then A satisfies (B) but not
(7). The spectrum of A consists of X together with the homo-

morphism « defined by af< a >) = 1lim a .
nowo o

Example 8: Let X be a completely regular space, and let A
be the algebra of all continuous complex valued functions on X. Then
A always satisfies (B), while the spectrum of A 1is the Q-closure of

X 1introduced by Hewitt [34].

Example 9: Let A be the algebra of all bounded analytic
functions on the unit disc {z : |z| <1} in the complex plane. This
algebra and its spectrum have been discussed in some detail by
I. J. Schark [63]. Further details are given in Hoffman [37].

n

Example 10: Let U = z: ai-gz— sy where the ai's are real-
i=1 i
valued differentiable functions of the x,'s. The set of all

1
16



Y

differentiable functions defined in a region R and satisfying Uf = O
there forms an algebra, and if R is sufficiently small, the spectrum
of this algebra is Just the set of characteristies of U 1lying in R.
This set can be given a differentiable structure and then the algebra

consists of all differentiable functions on the set of characteristics.

Example 11: If we let the coefficients of U in the preceding
example be complex valued, then by [49] the algebra of solutions will
in general have a spectrum which is a subset of the space of (n-1)
complex variables with the algebra represented as all functions con-

tinuous on the spectrum and complex analytic in the interior. 1If, for

example, U 5'3$I + 1 52;- + i(xl + ix2) 52; , then the spectrum of
the algebra of functions which satisfy Uf = O 1in the sphere

xi + xg + x§ <1 1is the region in the space of two complex variables
given by

2
Im z, < - |zl|

(Re 22)2 + |Zl|2 <1,

and the algebra is represented by all functions which are complex
analytic in this region and sufficiently smooth on the boundary. All
solutions of the equation Uf = O, are obtained by taking such a

2 2
function and replacing zy by Xy + ix2 and z, by x, - i(xl + x2).

3
Further examples of function algebras and their properties are
given by Hoffman and Singer [39]. Interesting special exsmples are

treated by Bishop [10] and by Stolzenberg [67].

17



5. Boundaries for function algebras. Let A be a function
v
algebra with compact spectrum I(A). Silov [26] bas shown that there

is a closed set YC Z(A) with the property that sup |[f(y)| =
YeY

= . 51}1:;2 R |£(x)| and that if any other closed set Z(C Z(A) has this
pro;erty then Y(C Z. This set Y 1is referred to as the S:\I.'lov boundary
for A. If A 1is a function algebra on a compact set X and if A

is weakly inverse closed (satisfies property (ao)) , then it follows

from Proposition 1 that the Sflov boundary Y for A 1s contalned

in X. Numerous examples are given in [39].

Bishop [12] has shown that for a uniformly closed function
algebra A on a compact metric space X the set M consisting of
those points in X, each of which is the unique maximum of scme f
in A, has the property that sup |f(x)| = sup |f(y)| for each

xe X ye M
f in A. Further properties of this Bishop boundary are discussed

in [17].

6. Dirichlet algebras. A function algebra A on a compact
set X 1is called a Dirichlet algebra [28] if the real parts of functions
in the algebra are dense (in the sense of uniform convergence) in the
space C(X) of all continuous functions on X. Interesting results
concerning Dirichlet algebras have been obtained by Wermer (751, [76]
and 8 nice treatment of their properties can be found in Hoffman {371,

A generalization due to Hoffman [38] is the concept of a log-
modular algebra which is an algebra A on a compact space X such
that the logarithms of the absolute values of the invertible elements
in A are dense in C{(X). Hoffman shows that many of the most
important properties of Dirichlet algebras are also shared by the log-

1 as .
modular algebras 18



7. The one-dimensional cohomology of the spectrum. This section
is devoted to & proof of a theorem of Arens and myself which says that
for certain algebras A the one-dimensional Cech cohomology group over
the integers of the spectrum of A 1is isomorphic to the quotient of the
group of units in A by the subgroup of exponentials. Proposition 12
states this result for a class of function algebras and the following
theorem states that this is also true for every commutative Banach
algebra. These theorems and their proofs are given here not only because
of their intrinsic interest, but also because the proof gives an excel-
lent illustration of the application of the theory of functions of
several complex variables to obtain results in function algebras.

We begin by describing a canonical homomorphism 17 of the non-
zero continuous complex-valued functions on a paracompact space X in
the one-dimensional cohomology group Hl{X,I) of X with integer co-
efficients. Let (2 be the sheaf of germs of continmuous functions on
X (with additive group structure), (Z* the sheaf of germs of con-
tinuous non-vanishing functions on X (with multiplication as the
group operation), and 1 the conetant sheaf of integers on X. If
exp is the mapping f -»ezﬁif, then we have the following exact

sequence of sheaves
exp *
0O—m>I1— (> —_— 0 .
Hence we have the exact sequence of cohomology groups [35):
x 0
0—> B°(x,I) —> 8%(%, ) —> ©°ix, 7 ) —> #(x,1)

_—'>H1(X)e) =0,

19



the last group being O since CZ is a fine sheaf [35]. Thus we have

a homomorphism n of the multiplicative group of continuous functions

on X which do not venish anywhere onto the group Hl(X,I).(cf.[zj]). The
kernel of 1n consists of the range of the exponential mapping, i.e.

of those g for which there is a continuous function f such that

g = exp f. Note that if g 1is a continuous function on X and

Ig - l| < e<1l, then g has a continuous logarithm, and ng = O.

It is readily verified that the mapping n is functorial in the
sense that, if Y 1s another paracompact space, then for each con-
tinuous mapping ¢ : Y - X the adjoint mappings &:H%LH—J%LU
and @* : C(X) -» C(Y) commute with 1, i.e. 7g¥* = @¥*n.

We shall need two results from the theory of several complex
variables about analytic functions on polynomially convex sets in Cn.
A compact set X in the space Cn of n-complex variables is said to
be polynomially convex if given y £ X, there is a polynomial p such
that

|p(y)| > sup [p(x)]| .
xe X
Ir o is the sheaf of germs of holomorphic functions on X,
Theorem B of Cartan [19] states that H‘l(x, 0) = 0. From this we

derive the following lemma:

Lemma 2: Let X be a campact polynomially convex set in Cn.
Then the multiplicative group of non-vanishing holomorphic functions
(i.e. of continuous functions which have an extension which is holo-

morphic in a neighborhood of X) is mapped onto Hl(X,I) by the

20



mapping 7n. The kernel of n consists of functions which are ex-

ponentials of holomorphic functions on X.

*,
Proof: Let 4 be the sheaf of germs of non-vanishing holo-

morphic functions on X. Then we have the exact sequence

from which we obtain the exact sequence

—_ HO(X, @)g Ho(xg c*)—l) Hl(x)I) E—— Hl(xy e) =0,

the last group being zero by Theorem B. But HO(X,C:*) is just the
multiplicative group of non-zero holomorphic functions on X, and the
exactness of the sequence is precisely the conclusion of the lemma.

We shall also need the following lemma. This lemma is standard
and is an easy consequence of corollaire 4 of [19], and we omit the

proof.

Lemma 3: Let X be a campact polynomially convex set in c?
and f a holomorphic function on X, 1i.e. on a neighborhood of X.
Then f can be uniformly approximated on X by polynomials.

If A 1is a function algebra, the units in A are the functions
which are never zero on the spectrum X of A. Thus 1 maps the
units in A 1into Hl(X,I). We are now in a position to prove a pre-

liminary proposition:

Proposition 10: Let A be a finitely generated algebra with

compact spectrum X, and suppose that A 1is closed under uniform
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convergence on X. Then 1 maps the group M of units in A onto
Hl(X,I) and the kernel of n 1is the range E of the exponential

function on A.

Proof: Let fl, e fn be the generators of A. Then A
consists of those functions on X which are uniform limits of poly-
nomials in (fl, cee fn). Let F be the mapping of X into ¢® whose
components are fl, ees fn. Since A separates points of X, and

each element in A 1is a uniform limit of polynomials in tne fi’ it
follows that the f1 separate points in X. Thus F 1is a homeo-
morphism of X onto a compact set in Cn, and if we identify X

with PF[X], the algebra A becomes the algebra of uniform limits of
polynomials on a compact subset X of c®. If for some Y € c® we

have

Ip(y)| < sup |p(x)] ,
xeX

then the homomorphism n defined on polynomials by

n(p) = p(y)

extends to a homomorphism on A. Thus y 1is in the spectrum of A.
Since X 1is the spectrum of A there i1s an x in X such that
p(y) = p(x) for all polynomials p. But this implies y = x and
hence y € X. Thus X 1is a polynomially convex subset of c?.

It follows from Lemma 3 that all functions which are holomorphic
on X are in A. Since the group M of units of A 1is the set of

functions in A which are never zero, M contains all holomorphic
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non-vanishing functions on X, and Lemma 2 implies that n maps A
onto Hl(X,I).

Let g be a function A which is never zero on X, and let
€ = inf [g(x)l on X. Since A 1is the closure on X of the poly-
nomials, there is a polynomial p on X such that |g - p| < ¢/2.
Thus Pp 1is a non-vanishing holomorphic funection on X, and
p = gl - (g-p)/gl. Since [(g-pP)/g| <1/2, we have n[1l - (g-p)/g] =0,
and consequently n(p) = n(g) = 0. Hence by Lemma 2 there is a holo-
morphic function h on X such that p = exp h. Since A 1is uniformly
closed, the series

(e-p)”
L _

converges to a function k in A, and 1 - (g-p)/g = exp (-k). Thus
g = exp (h + k). This shows that the kernel of 1 1is the subgroup of
exponentials, proving the proposition.

The next proposition removes the restriction that A be finitely
generated. The method of proof is typical of the manner in which

propositions about finitely generated algebras can be generalized.

Proposition 11. Let A be a uniformly closed function algebra
with compact spectrum X. Then 1n maps the group M of units of A
onto Hl(X,I) and the kernel of 7 consists of range E of the

exponential mapping on A.
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Proof: Let [Aa] be the system of finitely genera.tedl sub-
algebras of A directed under inclusion. If a4 B, 1i.e. if

; B
AaC Ag, we define h

direct limit of the direct system (Aa; hgl of algebras.

Let Xa be the spectrum of Aa, and cpg be the adjoint of

to be the inclusion mapping. Then A 1is the

B
b

limit of (xa, cpg}, and the projections @, of X onto X, are the

. Then by Proposition 9 the spectrum X of A 1is the inverse

adjoints of the projections ha of Aa into A. Moreover [42], the

group H = Hl(X,I) is the direct limit of the direct system of groups

(Ha, ;B) where H, = Hl(Xa, I). Thus if 7 ¢ H, there is an «a

and an element Yo € Ha such that 7 = q>; 7(1' By Proposition 10 there

isan f ¢ Aa such that 7a = nf. Thus

*

7 =94 0f = 19 f = n(foq,)

But f°q>a is a non-vanishing function in A. Thus 1 maps M onto
B (X, T).

Suppose now that f is a unit in A and that nf = 0. Then f
is also a unit in the algebra Aa generated by f and f-l. Let fa
be the element f of Aa considered as a function on the spectrum

X 6 of Aa. Then f=haf

o o’ and

O=nf=q>;nfa.

lHere we mean an algebra Aa which is the uniform closure of all

polynomials in a given finite set of elements of A.
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Since H 1is the direct limit of the groups HB’ there must be a

B » @ such that

g

o
[}

¥*
wa nqu .

Hence

o
|

B
= n(ha fa) .

Thus hg fa is an element of AB which is mapped into zero by 1.

Thus by Proposition 10 there is a g in A_, such that hg fa = exp g.

B
nf £

But this implies that f = hB g £ = hﬁ exp g = exp(g«pB). Thus f 1is

the exponential of an element of A, proving that the kernel of 17 1is
the range of the exponential function on A.
We now extend this last proposition to a class of algebras which

we do not assume to be uniformly closed.

Proposition 12: Let A be an algebra with compact spectrum X,
and suppose that A as a function algebra on its spectrum is inverse
closed. Then 1 maps the group M of units of A onto Hl(i;l).
Suppose further that for each f ¢ A the function exp f 1is in A.
Then the kernel of 7 1s the uniform closure of the range of the
function exp on A. If in addition A has the property that if
|£ -1] <1/2 then f =expg for g e A, then the kernel of 1 is
Just the range E of the exponential function on A. Thus if A

satisfies these two conditions we have
Hl(X,I) = M/E .
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Proof: Let A be the algebra on X which 1s the uniform
closure of A. Since A 1s inverse closed, X 1is also the spectrum
of A by Proposition 3. For each 7 ¢ Hl(X,I) there is a nor-
vanishing function f 4in A such that nf =7. Let ¢ =min lz],
and let g be an element of A such that |f - g| < ¢/2. Then g

does not Yanish on X, and
18 = nf + q[1 - (£-g)/f]
=n3f,

since 1[1 - (f-g)/f] must be zero because [(f-g)/f| < 1/2. This

shows that n 1s onto Hl(X,I).

Suppose that f 1s a non-vanishing function in A and nf = 0.
Then by Proposition 11 there is a function h ¢ A such that f = exp h.
Since h can be approximated by elements in A, f can be approximated
by exponentials of functions in A. Thus if the exponential function
is defined on A, we have the kernel of 71 equal to the uniform
closure of the range of exp.

In particular, if nf =0, we can finda g in A such that
| - exp g| <1/3min £f. Then |1 - £ exp(-g)| < 1/2. But if A
satisfies the last condition of the proposition, then
f exp(-g) =1 ~ [1 - £ exp(-g)] = exp(h) for some h in A. Then
f = exp(g + h), and f 1s in the range of exp. This proves the
proposition.

Even if A 1s not a function algebra, we can define a mapping 1
of the group of units of A 1into Hl[Z(A),I] by defining nf to be

n%, where % 1s the representation of f as a function on ZI(A).
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The following theorem (due to Arens and myself) shows that the con-
clusion of the last proposition is true for arbitrary commutative Banach

algebras.

Theorem: Let A be a coomutative Banach algebrs with spectrum
X. Let M be the group of units in A and E the range of the

exponential function on A. Then

Hl(X,I) = M/E .

Proof: Let f —»? be the mapping which associates to each f
in A the function ? on X defined by 2(x) = nf. Let A be the
image of A wunder this mapping. Since X 1is the space of maximal
ideals of A, the algebra ﬁ is inverse closed and each nowhere zero
function in A 1is the image of a unit in A. Thus 1 maps the group
M of units of A onto Hl(X,I) by Proposition 12. Since A is a
Banach algebra, the function exp 1is defined and takes elements of ’ﬁ
into elements of A. Thus by Proposition 12 a unit £ of A 1is
mapped into zero by n 1if and only if ? is the uniform limit of
functions E vhere g =exph with h in A. Choose g of this
form such that sup |f - €| < 1/3 inf |F|. Then |1 - 287} < 1/2,

and so [50] we have

= - M <z
Thus the series
A R
n
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converges in A to an element k, and we have fg-l = exp (-k). Thus

f =exp (h - k), and f is in the range of the exponential function.
The method used to derive Proposition 10 from Cartan's

Theofem A can also be used to derive the following proposition about

certain algebras whose spectra are not compact. Remembering that every

open Riemann surface (and a fortiori every plane domain) is & Stein

manifold, this proposition gives a result of Rudin's as a special

case [58].

Proposition 13: Let A be the algebra of all holomorphic
functions on a Stein manifold X, let M be the multiplicative group
of nowhere vanishing functions in A and let E be the range of the

exponential function on A. Then

B (X,I) = M/E .
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